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C ross-streamline migration of a vesicle in a bounded Poiseuille flow is investigated experimentally and 
numerically. The combined effects of the shear gradient of the flow and of walls induce a migration of the 
vesicle towards the center-line of the channel. A migration law (as a function of relevant structural and 

flow parameters) is presented. This similarity law is compared with the laws governing the migration velocity of a 
vesicle in an unbounded Poiseuille flow and in a shear flow near a wall. The relative contributions of both effects 
are discussed. 

N ous étudions la migration transverse d’une vésicule dans un écoulement de Poiseuille confiné à l’aide 
d’expériences et de simulations. La vésicule migre vers le centre de l’écoulement sous l’effet combiné du 
gradient de cisaillement et de la présence de parois. Nous présentons une loi de migration donnant la 

vitesse de migration en fonction des différents paramètres caractérisant la vésicule et l’écoulement. Cette loi est 
comparée avec les lois donnant la vitesse de migration d’une vésicule dans un écoulement de Poiseuille non borné 
ainsi que dans un écoulement de cisaillement borné par une paroi. Le poids relatif de chacun de ces contributions 
est discuté. 

I  INTRODUCTION

Vesicles are closed phospholipid membranes ; they encap-
sulate an internal fluid and are usually suspended in an 
external aqueous solution. Physics of vesicles has attracted 
much interest in the recent decades and has been the subject 
of many theoretical and experimental works [1]. This is 
because of their ability to reproduce some dynamical beha-
viours observed for living cells (such as red blood cells) 
and the interest to exploit them as carriers of biomaterials 
(for example drugs). Understanding the dynamical behavior 
of such deformable entities (orientation, deformation and 
migration) when its suspending fluid is subject to shear, is 
a fundamental question and a crucial key to design micro-
fluidic devices with abilities to sort out and separate entities 
basing on their mechanical properties (size, deformability, 
encapsulated fluid...etc.) [2]. Likewise, lateral migrations 
induce non uniform lateral distributions of the suspended 
entities, which have important consequences on the rheology 
of a confined suspension (e.g. the Fahraeus-Lindquist effect 
in blood vessels [3]).

In the present work we investigate how Poiseuille flow in 
a microchannel induces lateral migration of a single vesicle. 
The Stokes limit (very small Reynolds numbers values) is 
considered, so that inertia can be neglected and therefore no 
inertial lift force would be expected. Vesicles dynamics under 
an external applied simple shear flow has been the subject of 
extensive studies, both in unbounded geometries [4-8] as 
well as in the presence of a bounding wall [9-13]. A vesicle 
placed in an unbounded fluid subject to simple shear (in the 
Stokes limit) does not exhibit any lateral migration with res-
pect to the flow direction. When the viscosity ratio between 
the inner and the outer fluids is small, it performs a tank-
treading dynamics where the orientation of the main axis of 
the vesicle is constant and the membrane undergoes a tank-
treading motion. If the suspended fluid is bounded by a wall, 
which breaks the translational symmetry perpendicular to 
the flow direction as well as the upstream-downstream sym-
metry, a tank-treading vesicle migrates away from the wall. 
This viscous lift force is caused by the flow induced fore-aft 
symmetry breaking of the vesicle’s shape [10]. Recently, we 
also found that even in unbounded geometry, the non linear 
character of the Poiseuille flow velocity profile (non uniform 
shear rate) induces lateral migration of vesicles towards the 1. Corresponding author
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flow center-line [14]. For a vesicle suspended in a fluid 
flowing in a microchannel (the case considered here), the 
two situations mentioned above coexist simultaneously. The 
microchannel wall and the Poiseuille flow both participate to 
push the vesicle toward the center-line of the channel, where 
a steady axisymmetric stage is reached. This final stage has 
been described in several papers [15-17]. Migration has also 
been reported on capsules [18-20] red blood cells [19,20] 
and drops [21,22].

Experiments as well as simulations are carried out in order 
to study the interplay between these two effects. In [23], we 
presented a law for the vesicle lateral migration in a micro-
channel, which depends on the geometry of the channel, on 
the Poiseuille flow parameters and on the intrinsic properties 
of the vesicle. In the following, we describe the experimen-
tal and numerical methods with more details. Thanks to 
complementary simulations, we are also able to discuss the 
relative importance of the wall and of the non uniformity of 
the shear rate in pushing a vesicle towards the centerline.

II  GENERAL FRAMEWORK

The microfluidic channel is straight and has a rectangular 
cross section. The flow direction is Ox, and the lateral migra-
tion is along Oy ; this means that migration is studied for a 
given position Z. Let 2w denote the channel width in the 
y direction, and v0 the imposed flow velocity at the center 
of the channel in the absence of vesicle. The two walls are 
located at y = 0 and y = 2w. A vesicle, whose membrane is 
uncompressible, is characterized by two geometrical parame-
ters: its effective radius R, determined from its incompres-

sible volume V by and its reduced volume 

 (S is the area of the vesicle) cha-

racterizing vesicle deflation. The reduced volume is the vesi-
cle volume divided by the volume of a sphere of same area : 
it is thus lower or equal to 1. Volumes are calculated by 
assuming axisymmetric shapes along the vesicle’s main axis. 
The viscosity ratio is defined as , where and 

, denote the inner and the outer viscosity, respectively. A 
summary of the explored parameters ranges is presented in 
Tab. 1. Note that explored parameters in the plane are 
such that the dynamics is of tank-treading type [4-8]. 

The dynamics depends a priori on five key parameters 
. Our strategy is to consider first the case 

with no viscosity contrast ( ) while the reduced volu-
mes fall within a fixed narrow range. The three other key 
parameters are then varied in order to find a migration law. 
We also show that this law is valid for other values of and 

. This law is compared to the laws found in the unboun-
ded case and for a vesicle in a simple shear flow near wall.

III  METHODS

 III.1 EXPERIMENTAL METHOD

The microfluidic device is composed of straight channels 
of height h0 = 66  (in the direction of gravity z) and 
width 2w (rectangular cross section). The walls of the chan-
nels are made of PDMS glued to a glass cover slide. The 
flow is induced by applying a pressure difference between 
the inlet and the outlet which are linked to reservoirs pla-
ced at different heights. Vesicles are prepared following the 
electroformation method [24]. They are made of a DOPC 
lipid bilayer enclosing an inner solution of sugar (sucrose or 
glucose) in water or in a 1 :4 glycerol-water (w :w) mixture. 
Samples are diluted in a slightly hyperosmotic outer solu-
tion of the same type, in order to deflate them by osmosis. 
Dextran can be added to one of the solutions to modify the 
viscosity ratio .

A particular design of the upstream channel creates an 
initial condition where incoming vesicles touch the y = 0 
wall in the observation area and start to be lifted away from 
it (see Fig. 1). In particular, they have already developed a 
nearly ellipsoidal shape tilted with respect to the wall [10-
12]. Moreover, the flow has been established for a long time, 
resulting in centering in the z direction. In that case, the 2D 
fluid velocity profile in the xy plane where the vesicle lies 
is nearly parabolic, provided the rectangular cross section of 
the 3D channel obeys [25]. Therefore, as a first 
approximation, the vesicle is in a 2D Poiseuille flow, with 
reproducible initial conditions y (t = 0) = y0, where y0 is the 
position of the center of mass just before lift-off, which is 
close to R0. As the vesicle is centered in the Z -direction, the 

imposed profile is thus written as ,  

where  is the curvature of the parabolic velocity 
profile. The vesicle is tracked along its trajectory with a 
phase contrast microscope, and the position y of its center of 
mass is determined by image processing.

Table 1 : Summary of the parameters ranges explored in this work. The solutions are of density and viscosity close  
that of water, therefore the Reynolds number are lower than 10-2.

Experiments 1.1,5.8,10

Simulations
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Figure 1 : Phase contrast microscopy image of the 
Y-junction allowing to get reproducible initial conditions 
to study the lift force (the flow is from left to right): the 
initially centered vesicle follows the central streamline 
and is pushed against the wall at the bifurcation. Then 
it enters one of the two branches, which are equivalent, 
from which point its trajectory is studied. The channel’s 

width is 135 microns on the right.

 III.2 SIMULATION METHOD

III.2.1 Hydrodynamical equations

In the simulations, two-dimensional neutrally buoyant 
vesicles are considered (the same mass density  inside and 
outside the vesicle), having no viscosity contrast (  ). 
Since the Reynolds number is low (of the order of 10-2), the 
fluid flow inside and outside the vesicle is described by the 
Stokes equations :

  (1a)

  (1b)

where  is the pressure,  is the velocity and  the mem-
brane force at the point , given by :

  (2)

where  and  care the normal and the tangential unit vec-
tors, respectively. k is the membrane rigidity, H is the local 
membrane curvature and  a local Lagrangian multiplica-
tor introduced in order to fulfill the perimeter conservation 
constraint of the vesicle. Details of the derivation of the 
membrane force given by Eq. (2) are reported in Ref. [14]. 
This force has no zero value just on the membrane of the 
vesicle, hence the Dirac delta function in the right hand side 
of Eq. (1a). The membrane exerts the force given by Eq. (2) 
on its surrounding fluid as a response to the external hydro-
dynamical stresses that tend to bend it.

III.2.2 Boundary conditions

The above Stokes equations (1) are solved for the fol-
lowing boundary conditions : 1 - the velocity continuity 
across the membrane, because of the non-slip boundary 
condition and of the impermeability of the vesicle mem-
brane, 2 - the hydrodynamical stress jump across the mem-
brane is equal to the membrane force and 3 - the velocity of 
the external suspending fluid is undisturbed at distances far 
from the location of the vesicle membrane.

III.2.3 Boundary integral method

Thanks to the linearity of Eqs. (1), they are solved using 
the boundary integral method, which is a technique based on 
the Green’s functions [26]. Its adaptation to vesicle problems 
can be found in Refs [5,11,14,27]. The membrane velocity is 
given by the following integral equations, which are solved 
numerically :

  (3)

where  is the Green’s function for the fluid bounded by 
a steady infinite plane wall located at y = 0 :

   (4)

 is the Green’s function for an 

unbounded fluid, called also Stokeslet,  is 

the image of  with respect to the wall. The function

  (5)

is the Stokeslet doublet, and

  (6)

is the source doublet.  and ri is the ith component 

of the vector . The evolution of the vesicle shape and its 
location is obtained by updating every membrane node using 
a Euler scheme : 

IV  RESULTS FOR 

 IV.1 EXPERIMENTAL RESULTS

The experimental evolution with time of the lateral posi-
tion y of the center of mass of a vesicle with  is 
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shown in Fig. 2a. The vesicle quickly moves away from 
the wall, then the migration velocity decreases to zero as 
it approaches the center-line. Along this trajectory, it conti-
nuously deforms from a tilted ellipsoid to an axisymmetric 
bullet-like shape. For a given reduced volume, the function 
y(t) depends a priori on the three parameters (R0 , w, v0).

In order to determine the functional dependence of the 
migration velocity, space and time variables are rescaled. In 
both simple shear flow cases and unbounded Poiseuille, the 
only space scale is given by vesicle’s size R0. Coherently, the 
dimensionless position  is introduced. The reduced 
half-width of the channel will be noted . Howe-
ver, the choice of a relevant time (or velocity) scale is less 
obvious. Indeed, while the inverse of the shear rate yields 
a natural scale, this cannot be an adequate choice since the 
shear rate is not constant along the trajectory. The trick is to 
rescale each infinitesimal time t step around the time by the 
local shear rate  of the unpertur-
bed flow at the position y(t). Note that it amounts to saying 
that the migration velocity is controlled by the local flow, 
which is a reasonable assumption in a Stokes flow. Nonethe-
less, working directly with the velocity  instead of the 
position y(t) is less easy when starting with experimental 
data, because of the noise due to discrete time derivation of 
the position, which is known with a limited precision. Then 
the choice was made to work directly on the raw data y and 
t . The new dimensionless time-like parameter is obtained by 
integrating the rescaled time steps :

  (7)

 accounts for the history of the shear rates experienced 
by the vesicle along its trajectory. The raw data for the 
migration velocity spread over more than a decade in the 
parameters space. Interestingly, as shown in Fig. 2b, all 
experimental curves  collapse, whatever the values of 
R0, w, and v0 within the explored range . 
 A log-log plot of this master  curve is linear, a 
clear signature of a power law behavior , 
 where the dimensionless parameters  and  , that are 
independent from R0, w and v0 , are obtained from the data 
fit. Such collapse was found for all other studied reduced 
volumes [23]. By taking the  power of the latter relation 
before derivating, the lateral migration velocity as  a 
function of the position y and the triplet (R0, W, v0) is then 
easily extracted :

  (8)

This similarity law is the main results of our work 
and the basis for the discussions to come. In the range 

, one finds  
and . The error bars for these coeffi-
cients can be linked with the error bars on y and w due to 
local defects on the PDMS walls, and also (and mainly) with 
the uncertainties on the measure of , which requires a very 
precise determination of the membrane position. Since, as 
we shall see, the velocity depends on the reduced volume, 
this can lead to uncertainties on the determination of the 
coefficients.

Figure 2 : (a) : Experimental time evolution of the lateral position y for a vesicle with  (scatter). The dashed line 
indicates the center-line. The solid line shows the y(t) curve obtained from the numerical resolution of Eq. (8).  

(b) : Evolution of  versus  for four such vesicles.
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Note that the differential equation (8) has no analytical 
solution but can be easily solved numerically. Then a fitting 
procedure of the experimental curve y(t) can directly yield 
the parameters  and  without going through a noise-
generating rescaling of the experimental data (see Fig. 2a). 
This rescaling procedure was only used to find the form of 
the migration law since there exists no theoretical prediction 
we could be inspired by. 

 IV.2 SIMULATION RESULTS

Vesicles with R0 = 10  and a reduced volume v = 0.95 
are initially placed in five different lateral positions, one 
of them being intentionally placed at the flow center-line 
( ). The external applied Poiseuille flow is characteri-
zed by v0 = 600  and . Two cases are consi-
dered here for comparison purposes. The suspending fluid 
is unbounded or bounded by a infinite plane wall located at 
y = 0. 

For the unbounded case (Fig. 3a). All vesicles migrate 
laterally to the flow center-line as was reported in Ref. [14]. 
The center-line is their equilibrium lateral position where 
they move parallel to the flow direction with an axisym-
metric shape (the blue colored shape in Fig. 3a). The final 
equilibrium lateral position location does not depend on the 
initial position of the vesicle.

Moreover, the problem is symmetric with respect to the 
location of the flow center-line, vesicle placed above or 
below this axis move and deform in the same fashion (see 
the curves and their corresponding shapes in Fig. 3a).

By placing a steady infinite plane wall at the position 
y = 0 (where the Poiseuille flow velocity vanishes), the evo-
lution in time of the vesicle lateral position is affected (see 
Fig. 3b). In this case, the dynamics of the vesicle depends 
on the initial lateral position.

Vesicles initially placed below the center-line 
( ) migrate laterally until reaching an equi-
librium lateral position (with a slight shift above the cen-

ter-line, which becomes negligible for ). Here the 
vesicle reaches this position faster compared to the unboun-
ded case (see for example the vesicle presented with the red 
line in the two Figs. 3a and 3b), due to the presence of an 
additional lift force, linked to the presence of the wall. Even 
without the presence of a second (opposite) wall, the vesicle 
moves parallel to the flow direction with a nearly axisymme-
tric shape (the blue colored shape in Fig. 3b). This seems to 
indicate that migration forces due to the curvature dominate 
over wall effects near the center-line, or that the lift force 
due to the walls vanishes due to the local zero shear rate (in 
a wall-bounded shear flow, lift velocity is proportional to 
shear rate [13]).

In this configuration, one can compare the migration velo-
city with the law proposed in Eq. (8). The variations of this 
migration velocity vm with  are shown in Fig. 4 for dif-
ferent values of  and v0 . They confirm the experimental 
results since they are well described by the law given by 
Eq. (8) with  and . The agreement between 
experiments and simulations regarding the exponent  is 
quite satisfactory. However, numerical studies overestimate 
the amplitude . This is attributed to the 2D character 
(actually a translationally invariant form in the Z direction), 
causing an enhancement of the lift force. 

Numerically, the relative importance of the wall- and 
curvature- induced lift forces can be captured in the non-
bounded side of the suspending fluid, that is, in the  
domain : vesicles initially placed above the center-line 
( ) move with negative inclination angles 
(the magenta and the cyan colored shapes in figure 3b) 
because of the shape of the Poiseuille velocity profile in 
this region. The vesicle presented by the cyan colored line 
moves very slowly towards the centerline while the one 
presented with the magenta colored line travels outward 
the center-line. It is noteworthy that in this region the two 
lift forces are in competition and have opposite signs : the 
curvature induced lift force tries to attract the vesicle toward 
the centerline, while the wall induced lift force even at such 
distance still pushes the vesicle far from the wall. Howe-

        
Figure 3 : Evolution in time of the vesicle lateral position in Poiseuille flow for five different initial lateral positions.  

(a) in unbounded fluid, (b) in a semi-infinite fluid bounded by a plane wall located at y = 0 . In the two cases, the v0 = 600 
 and  and the vesicle has a reduced volume v = 0.95. The Poiseuille flow centerline is located at  . Vesicle 

shapes shown on the right side of each plot correspond to the ones taken at time 10 and to the curve with the same color.



117 LA HOUILLE BLANCHE/N° 5-2009

Lateral migration of vesicles in microchannels: effects of walls  and shear gradient

ver, their relative amplitude depends on the distance of the 
vesicle to the center-line. Close to the center-line, the shear 
rate tends to vanish and the wall induced lift force becomes 
weaker; this explains the inward migration of the cyan colo-
red vesicle. Far from the center-line, the shear rates become 
greater which explains the outward migration of the magenta 
colored vesicle. Moreover, when this vesicle travels away its 
shape undergoes larger deformations because it finds itself 
in regions with higher shear rates. Note that the shear rate 
in that region  has an opposite sign compared to the 

 domain, but the vesicle’s shape is the mirror image 
of the shape in the latter domain, leading to an upward lift 
force.

Back to the realistic case where the vesicle is placed 
between the wall and the center-line, we can clearly see that 
the effects of the walls and of the curvature of the velocity 
field are coupled in a non linear manner : curvature not only 
induces migration but also affects the shape and orienta-
tion (while in a simple shear flow they are quasi constant, 
whatever ), which affects the lift force. Indeed, the law 

 markedly differs from what was known in the 
previously studied cases : in an unbounded Poiseuille flow, 
it was shown that the migration velocity is constant but near 
the centre-line (where it drops to zero), as it can be seen 
on Fig. 3(a)[14]. On the other hand, in a simple shear flow 
bounded by a wall, it was theoretically [9] and experimen-
tally [13] shown that the migration velocity is proportional 
to . A naïve extrapolation of this result would give 
a velocity proportional to , to which a constant 
should be added for the curvature contribution. The result 
we found is far from this extrapolation, which indicates that 
the non-linear coupling through the shape modifications is 
strong. Dissipation on the walls located at z = 0 and , 
which are not present in Refs. [9,13], could also modify the 
exponent. Further experiments with different channel depths 
are planned.

V  VARIATIONS WITH THE REDUCED 
VOLUME AND THE VISCOSITY RATIO

For all the values of v and  explored here, the experi-
mental and numerical curves y(t) are still very well fitted 
by the theoretical law given by the resolution of Eq. (8). 
For the sake of comparison, it is then convenient to rescale 
the migration velocity in such a way that it does not depend 
either on R0, nor on w and v0 :

  (9)

Values for  at  are reported on Fig. 5. As dis-
cussed in Ref. [23], deflating not too viscous vesicles 
increases their ability to migrate. However, for high enough 

 , deflating too much a vesicle can lead to a slow down in 
the migration (which remains directed towards the center-
line). This non-monotonous behavior of the velocity was 
found by Olla in the case of vesicles placed in a simple 
shear flow bounded by a wall [9]. It can be understood with 
simple geometry arguments. A spherical vesicle (v = 1) 
should not migrate owing to the fore-aft symmetry. As soon 
as it is not spherical, the vesicle has an elongated shape, 
whose direction is in first approximation given by the direc-
tion of the elongational component of the flow, which is 
45o relatively to the flow direction. The rotational part of 
the flow makes the vesicle’s membrane and the inner fluid 
rotate. The more deflated (thus elongated) the vesicle, the 
more important the induced dissipation inside the vesicle. 
Consequently, vesicles tend to align with the flow direction 
in order to minimize this dissipation, resulting in an equi-
librium angle between 0 and 45 degrees, which decreases 
when v decreases and when  increases [4-9], as can be 
clearly seen on Fig. 6. In the 0 angle configuration, ano-
ther fore-aft symmetry is reached, and no migration should 
occur. From these considerations one can infer a maximal 
velocity at a given value of v. Beyond the 0 angle configu-
ration, the vesicle switches to tumbling motion. Note that 
when  , the 0 angle configuration is never reached, 

Figure 4 : Lateral migration velocity vm of a vesicle 
versus its lateral position y for different W and v0 . 

Scatter : simulation data; solid lines : fits with Eq. (8).

Figure 5 : Reduced migration velocity  of a vesicle at 
position  versus its reduced volume. Experimental 

values are calculated using Eq. (8) with the adjusted 
 and  . For readability, the simulations data are 

uniformly rescaled by a factor  . Values for  
are not available through the simulations.
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while for  it is reached for  according to 
the Keller and Skalak model [4]. Coherently, no maximum 
is found for  by Olla, while for  it is found 
at v = 0.98 . In our case, two effects could move these 
locations. First, the 0 angle position and transition to tum-
bling would be probably found for lower values of v in 
the presence of walls, which prevent any tumbling motion 
that would require to “push” water around the vesicle [28]. 
Secondly, migration towards the center-line favors the reco-
vering of a fore-aft symmetry, since in the center the main 
axis of the vesicle will be parallel to the flow. Contrary to 
the first one, this phenomenon could switch the maximum 
towards higher values for . Finally, we observe a maximum 
position in the velocity around v = 0.98 for , while no 
maximum is observed for  within the explored range 
v, which are results similar to the one predicted by Olla in 
the simple shear flow case.  

VI  CONCLUSION

We presented a similarity law for the lateral migration 
velocity of a vesicle in a bounded Poiseuille flow as a func-
tion of its distance to the walls and to the center-line, its 
effective radius, the channel’s width and the flow velocity. 
This law is still valid for a large set of reduced volumes and 
viscosity contrasts. Deflating a spherical vesicle increases 
its deformability, thus its asymmetry under shear, and leads 
to higher migration velocities. However, beyond a given 
viscosity ratio, the tank-treading to tumbling transition is 
approached when the deflation increases, and the migration 
velocity undergoes a decline which can be understood on the 
ground of general symmetry considerations.

Far from the center-line, the migration is mainly governed 
by the wall-induced lift force, while curvature-driven domi-
nate in its vicinity. However, both effects always coexist and 
couple in a non linear way, giving raise to a migration law 
which could not be directly inferred from already known 
laws of more simple cases.

This work is to be completed by experiments with red 
blood cells, which are more deflated objects with a high 
viscosity contrast. When isolated, red blood cells tumble and 
thus no migration should occur. In the meantime, depletion 
zones are generally observed near the capillary walls when 
a red blood cells suspension flows. One can suggest seve-
ral reasons for this : loss of fore-aft symmetry even in the 
tumbling regime due to the deformability of the red blood 
cell or the capillary walls, or an increase of the effective vis-
cosity of the outer solution due to the presence of numerous 
other red blood cells.
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